

Interchangeable

Instruments
VirtualIVI

IVI-6.1: IVI High-Speed LAN Instrument Protocol
(HiSLIP)

Apr 23, 2020
 Revision 2.0

© Copyright 2020 IVI Foundation.
All Rights Reserved.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 2 IVI Foundation

Important Information

The IVI-6.1: High-Speed LAN Instrument Protocol Specification is authored by the IVI Foundation

member companies. For a vendor membership roster list, please visit the IVI Foundation web site at

www.ivifoundation.org.

The IVI Foundation wants to receive your comments on this specification. You can contact the Foundation

through the web site at www.ivifoundation.org.

Warranty

The IVI Foundation and its member companies make no warranty of any kind with regard to this material,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

The IVI Foundation and its member companies shall not be liable for errors contained herein or for

incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

No investigation has been made of common-law trademark rights in any work.

http://www.ivifoundation.org/
http://www.ivifoundation.org/

IVI-6.1: IVI High-Speed LAN Instrument Protocol 3 IVI Foundation

1 Overview of the IVI HiSLIP Specification 6
1.1 IVI HiSLIP Overview ... 6
1.2 References ... 6
1.3 Definitions of Terms and Acronyms ... 7

2 HiSLIP Protocol Description ... 8
2.1 Protocol Version ... 8
2.2 HiSLIP Port Assignment ... 8
2.3 Message Format .. 8
2.4 Summary of HiSLIP Messages ... 10
2.5 Numeric Values of Message Type codes .. 15
2.6 Locking Mechanism .. 17

2.6.1 Server Behavior When Client Does Not Have a Lock .. 17
2.7 HiSLIP Buffer Sizes.. 19

3 Overlapped and Synchronized Modes ... 20
3.1 Synchronized Mode .. 21

3.1.1 Synchronized Mode Server Requirements .. 21
3.1.2 Synchronized Mode Client Requirements .. 21

3.2 Overlapped mode .. 23
3.2.1 Overlap Mode Server Requirements ... 23
3.2.2 Overlap Mode Client Requirements ... 23

4 Server Capabilities .. 24
4.1 Secure Connection .. 25

4.1.1 Client authentication mechanisms .. 25
4.1.2 Server certificate ... 25
4.1.3 Encryption modes ... 25
4.1.4 Initial Encryption Modes .. 26

5 Descriptors ... 27
5.1 Descriptor types .. 28

5.1.1 Supported TLS versions descriptor ... 28
5.1.2 TLS information descriptor .. 28
5.1.3 TLS last error descriptor ... 29

IVI-6.1: IVI High-Speed LAN Instrument Protocol 4 IVI Foundation

6 HiSLIP Transactions .. 30
6.1 Initialization Transaction .. 31
6.2 Fatal Error Detection and Synchronization Recovery ... 35
6.3 Error Notification Transaction .. 36
6.4 DataTransfer Messages ... 37
6.5 Lock Transaction .. 39

6.5.1 Unlock Considerations .. 41
6.6 Lock Info Transaction ... 43
6.7 Remote Local Transaction .. 44
6.8 Trigger Message .. 47
6.9 Vendor Defined Transactions ... 48
6.10 Maximum Message Size Transaction ... 49
6.11 Interrupted Transaction ... 50
6.12 Device Clear Transaction .. 51

6.12.1 Feature Negotiation .. 52
6.13 Service Request ... 54
6.14 Status Query Transaction .. 55

6.14.1 MAV Generation in Synchronized Mode ... 56
6.14.2 MAV Generation in Overlapped Mode .. 56
6.14.3 Implementation Note .. 56

6.15 Establish Secure Connection Transaction ... 58
6.16 End Secure Connection Transaction ... 62

A. Analysis of Interrupted Conditions .. 64
A.1 Slow Client.. 64
A.2 Fast Client ... 65
A.3 Intermediate Timing .. 67

67

IVI-6.1: IVI High-Speed LAN Instrument Protocol 5 IVI Foundation

IVI HiSLIP Revision History

This section is an overview of the revision history of the IVI HiSLIP specification.

Table 1. IVI HiSLIP Class Specification Revisions

Status Action

Revision 1.0 First version of specification.

Revision 1.1 Changes:

- Incremented spec revision to 1.1

- Clarified that the protocol can be run at port other than IANA

assigned port (4880)

- Clarified that the sub-address is limited by VISA, but not the

HiSLIP protocol

- Added an observation regarding the fact that since an

AsyncUnlockResponse is sent in response to both a lock and an

unlock, a late response after a client IO timeout needs to be

handled carefully, and that the timing of the unlock response is

up to the server (see section 4.5.1)

Revision 2.0 Changes:

- Incremented spec revision to 2.0

- Incremented protocol version to 2.0

- Added support of capabilities

- Added capability Secure Connection

- Editorial

IVI-6.1: IVI High-Speed LAN Instrument Protocol 6 IVI Foundation

1 Overview of the IVI HiSLIP Specification

HiSLIP (High Speed LAN Instrument Protocol) is a protocol for TCP-based instrument control that provides the

capabilities of conventional test and measurement protocols with minimal impact to performance. The HiSLIP

protocol includes:

 Device clear

 Instrument status reporting with message available calculation per IEEE Std 488.2

 Instrument remote/local status control

 Instrument locking

 Service Request from the instrument to the client

 End message

 Message exchange protocol interrupted error detection

 Encrypted connections

 Client and server authentication

1.1 IVI HiSLIP Overview

HiSLIP creates two TCP connections to the same server port1 referred to as the synchronous channel and

asynchronous channel. HiSLIP sends packetized messages between the client and server on both channels.

The synchronous channel carries normal bi-directional ASCII command traffic (such as SCPI) and synchronous GPIB-

like meta-messages (such as END and trigger). Generally, both the client and server can leave messages in the

synchronous buffers and execute them in a synchronous fashion.

The asynchronous channel carries GPIB-like meta-messages that need to be handled independently of the data path

(such as device clear and service request). Generally, both the client and server need to treat asynchronous messages

as higher priority and act on them before messages from the synchronous channel.

The HiSLIP protocol permits multiple virtual instruments at a single port at a given IP address. When the connection

is initialized, the client specifies a sub-address that designates the specific virtual instrument to be associated with this

connection. The protocol does not associate any aspects of the connections to multiple virtual instruments.

The HiSLIP protocol enables secure encrypted connections. This capability allows the client to verify a server

certificate, and the server to verify the client using one of various mechanisms. The encrypted connection may be

switched off when transmitting large amounts of non-sensitive data.

1.2 References

Several other documents and specifications are related to this specification. These other related documents are the

following:

VPP-4.3 The VISA library Specification defines the client side API. This specification

constrains the implementation of the protocol. This specification is available from the

IVI Foundation web site at www.ivifoundation.org.

LXI HiSLIP The LXI HiSLIP Extended Function specifies the server side implementation. This

specification constrains the implementation of the protocol. This specification is

available from the LXI Consortium web site at www.lxistandard.org.

VXI-11.1, 11.2, and 11.3 These standards define the VXI-11 protocol which is the primary predecessor to

HiSLIP.

IEEE 488.2 IEEE Std 488.2 defines the interrupted protocol requirements as well as the appropriate

server behavior for several of the GPIB messages.

RFC 4422 Specifies the Simple Authentication and Security Layer (SASL) used for authentication

1 The IANA assigned port for HiSLIP is 4880

http://www.ivifoundation.org/
http://www.lxistandard.org/

IVI-6.1: IVI High-Speed LAN Instrument Protocol 7 IVI Foundation

RFC 8446 Specifies the Transport Layer Security (TLS) protocol used for encryption

1.3 Definitions of Terms and Acronyms

This section defines terms and acronyms that are specific to the HiSLIP protocol:

RMT From IEEE Std 488.2: Response Message Terminator. RMT is the new-line

accompanied by END sent from the server to the client at the end of a response. Note

that with HiSLIP this is implied by the DataEND message.

END From IEEE Std 488.2: END is a protocol generated indication of the end of a message.

It is not indicated with an 8-bit value in the data stream. This message is provided by

HiSLIP.

eom From IEEE Std 488.2: end-of-message. eom is the termination character of a message

to the server. The eom is either: new-line, END, or a new-line accompanied by an

END. For the purposes of HiSLIP, eom is implicit after group execute trigger.

interrupted From IEEE Std 488.2: A protocol error indicating that a server received an input

message (either a command or query) before the client has fully accepted the response

of the preceding message.

HiSLIP High Speed LAN Instrument Protocol defined in this specification.

MAV From IEEE Std 488.2: A bit indicating that there is a message available from the

server.

SASL Simple Authentication and Security Layer

TLS Transport Layer Security

IVI-6.1: IVI High-Speed LAN Instrument Protocol 8 IVI Foundation

2 HiSLIP Protocol Description

Both the synchronous and asynchronous channels send all command and data information in a fixed packet format. A

complete packet is referred to as a message.

2.1 Protocol Version

The HiSLIP protocol version defined in this document is 2.0. The document revision may be different from the

protocol version.

2.2 HiSLIP Port Assignment

By default, all HiSLIP clients and servers shall use the IANA assigned port number of 4880.

This does not preclude HiSLIP clients and servers configuring to use the HiSLIP protocol on other ports.

2.3 Message Format

The messages consist of a header followed by a counted payload. However, the payload count is frequently zero.

Table 2 HiSLIP Message Header Format

Field Octets Field

 Offset

Prologue (ASCII “HS”) 2 0

Message Type 1 2

Control Code 1 3

Message Parameter 4 4

Payload Length 8 8

Data Payload

Length

16

Table 2 defines the header used for HiSLIP messages. The fields are:

Prologue A pattern to facilitate HiSLIP devices detecting when they receive an ill-formed

message or are out of sync. The value shall be ASCII ‘HS’ encoded as a 16 bit value.

‘H’ is in the most significant network order position and ‘S’ is in the second byte.

Message Type This field identifies this message. See Table 3, HiSLIP Messages, for a description of

the HiSLIP messages. See Table 4,Message Type Value Definitions, for the numeric

values of each message type.

Control Code This 8-bit field is a general parameter for the message. If the field is not defined for a

message, 0 shall be sent.

Message Parameter This 32-bit field has various uses in different messages. If this field is not defined for a

message, 0 shall be sent.

Payload Length This field indicates the length in octets of the payload data contained in the message.

This field is an unsigned 64-bit integer. The maximum data transfer size may be

IVI-6.1: IVI High-Speed LAN Instrument Protocol 9 IVI Foundation

limited by the implementation, see section 6.10, Maximum Message Size Transaction

for details. If the message type does not use a payload, the length shall be set to zero.

All HiSLIP fields are marshaled onto the network in network order (big endian), most significant byte first.

Where the specification calls for an ASCII string as the payload the payload length shall refer to the length of the

number of characters in the string and extended ASCII (8-bit) is implied. A trailing NUL character shall not be sent or

accounted for in the length.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 10 IVI Foundation

2.4 Summary of HiSLIP Messages

Table 3 summarizes the HiSLIP messages.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 11 IVI Foundation

Table 3 HiSLIP Messages
S

en
d

er

C
h

an
n

el

Message Type (1 byte) Control Code (1 byte) Message Parameter (4

bytes)

Payload (counted field)

C S Initialize UpperWord : Client

protocol version

LowerWord : Client-

vendorID

sub-address in ASCII, may

be of zero length

S S InitializeResponse Bit 0: 0 Prefer Synchronized

Bit 0 :1 Prefer Overlap

If negotiated protocol version

>= 2.0:

Bit 1: 0 encryption optional or

secure connection capability

not supported

Bit 1: 1 encryption mandatory

Bit 2: 0 Establish Secure

Connection Transaction not

required after Initialization

Transaction

Bit 2: 1 Establish Secure

Connection Transaction must

follow Initialization

Transaction.

Bit 3..5: reserved for future

IVI features

Bit 6..7: vendor specific

UpperWord :

Negotiated protocol

version

LowerWord :

SessionID

If negotiated protocol version

>= 2.0: The payload is

reserved

E E FatalError ErrorCode (see Table 14) -- Error Message in ASCII,

may be of zero length

E E Error ErrorCode (see Table 16) -- Error Message in ASCII,

may be of zero length

C S Data Bit 0 : 0 RMT was not

delivered

Bit 0 : 1 RMT was delivered

MessageID (identifier

for this message)

Counted data

S S -- MessageID – usage

depends on

overlapped or

synchronized mode

Counted data

C S DataEND Bit 0 : 0 RMT was not

delivered

Bit 0 : 1 RMT was delivered

MessageID (identifier

for this message)

Counted data

IVI-6.1: IVI High-Speed LAN Instrument Protocol 12 IVI Foundation

S S -- MessageID – usage

depends on

overlapped or

synchronized mode

Counted data

C A AsyncLock 1 – Request

Timeout

(in milliseconds)

LockString in ASCII, may be

of zero length.

0 – Release MessageID of last sent

message

--

S A AsyncLockResponse In response to request:

0 – Failure

1 – Success

3 - Error

-- --

In response to release:

1 - Success exclusive

2 - Success shared

3 - Error

-- --

C A AsyncLockInfo -- -- --

S A AsyncLockInfoResponse 0 – No exclusive lock granted

1 – Exclusive lock granted

Number of HiSLIP

clients holding locks

when AsyncLockInfo

was processed

--

C A AsyncRemoteLocalControl 0 – Disable remote

1 – Enable remote

2 – Disable remote and go to

local

3 – Enable Remote and go to

remote

4 – Enable remote and lock

out local

5 – Enable remote, go to

remote, and set local lockout

6 – go to local without

changing REN or lockout

state

MessageID of last sent

message

--

S A AsyncRemoteLocalRespon

se

-- -- --

C A AsyncDeviceClear -- -- --

S A AsyncDeviceClearAcknowl

edge

Feature-bitmap -- If negotiated protocol version

>= 2.0: The payload is

reserved

C S DeviceClearComplete Feature-bitmap -- If negotiated protocol version

>= 2.0: The payload is

reserved

IVI-6.1: IVI High-Speed LAN Instrument Protocol 13 IVI Foundation

S S DeviceClearAcknowledge Feature-bitmap -- If negotiated protocol version

>= 2.0: The payload is

reserved

C S Trigger 0 – RMT was not delivered

1 – RMT was delivered

MessageID

(this message)

--

S S Interrupted -- MessageID --

S A AsyncInterrupted -- MessageID

C A AsyncMaximumMessageSi

ze

-- -- 8-byte size – note that the

payload length is always 8

and the count is in the

payload.

S A AsyncMaximumMessageSi

zeResponse

-- -- 8-byte size – note that the

payload length is always 8

and the count is in the

payload.

C E GetDescriptors

S E GetDescriptorsResponse Counted data. All descriptors

returned at once

C A AsyncInitialize -- SessionID --

S A AsyncInitializeResponse If negotiated protocol version

>= 2.0:

Bit 0: 0 secure connection

capability is not supported

Bit 0: 1 secure connection

capability is supported

Bit 2..5: 0 (reserved for future

IVI features)

Bit 6..7: vendor specific

Server-vendorID If negotiated protocol version

>= 2.0: The payload is

reserved

S A AsyncServiceRequest Server status -- --

C A AsyncStatusQuery 0 – RMT was not delivered

1 – RMT was delivered

MessageID of last sent

message

--

S A AsyncStatusResponse Server status response -- --

C S StartTLS

C A AsyncStartTLS 0 – RMT was not delivered

1 – RMT was delivered

MessageID of last sent

message

4-byte size - MessageID of

last received message in

network byte order

S A AsyncStartTLSResponse 0 – busy

1 – success

3 – error

C S EndTLS

C A AsyncEndTLS 0 – RMT was not delivered

1 – RMT was delivered

MessageID of last sent

message

4-byte size - MessageID of

last received message in

network byte order

IVI-6.1: IVI High-Speed LAN Instrument Protocol 14 IVI Foundation

S A AsyncEndTLSResponse 0 – busy

1 – success

3 – error

C S GetSaslMechanismList

S S GetSaslMechanismListRes

ponse

 Counted data containing

space separated list of SASL

mechanisms

C S AuthenticationStart Counted data containing

selected mechanism

E S AuthenticationExchange Counted data

S S AuthenticationResult Bit 0: 0 Authentication failed

Bit 0: 1 Authentication

successful

If authentication fails,

mechanism dependent

error code

Counted data may contain

additional data if

authentication was

successful. If authentication

was not successful counted

data contains human readable

error message

E E VendorSpecific Arbitrary Arbitrary Data

In Table 3 :

 In the Sender column :

S indicates Server generated message

C indicates Client generated message

E indicates A message that may be generated by either the client or server

 In the channel column :

S indicates Synchronous channel message

A indicates Asynchronous channel message

E indicates A message that may be sent on either the synchronous or asynchronous channel

The following messages carry the RMT-delivered flag: Data, DataEND, Trigger, AsyncStatusQuery, AsyncStartTLS,

and AsyncEndTLS.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 15 IVI Foundation

2.5 Numeric Values of Message Type codes

The Table 4 defines the numeric values of the Message Type codes. Furthermore, the table associates a message type

with a capability.

Table 4 Message Type Value Definitions

Message Type Channel Numeric Value

(decimal)

Server

Capability

Minimum HiSLIP

protocol version

Initialize Synchronous 0 General 1.0

InitializeResponse Synchronous 1 General 1.0

FatalError Either 2 General 1.0

Error Either 3 General 1.0

AsyncLock Asynchronous 4 General 1.0

AsyncLockResponse Asynchronous 5 General 1.0

Data Synchronous 6 General 1.0

DataEnd Synchronous 7 General 1.0

DeviceClearComplete Synchronous 8 General 1.0

DeviceClearAcknowledge Asynchronous 9 General 1.0

AsyncRemoteLocalControl Asynchronous 10 General 1.0

AsyncRemoteLocalResponse Asynchronous 11 General 1.0

Trigger Synchronous 12 General 1.0

Interrupted Synchronous 13 General 1.0

AsyncInterrupted Asynchronous 14 General 1.0

AsyncMaximumMessageSize Asynchronous 15 General 1.0

AsyncMaximumMessageSizeResponse Asynchronous 16 General 1.0

AsyncInitialize Asynchronous 17 General 1.0

AsyncInitializeResponse Asynchronous 18 General 1.0

AsyncDeviceClear Asynchronous 19 General 1.0

AsyncServiceRequest Asynchronous 20 General 1.0

AsyncStatusQuery Asynchronous 21 General 1.0

AsyncStatusResponse Asynchronous 22 General 1.0

AsyncDeviceClearAcknowledge Asynchronous 23 General 1.0

AsyncLockInfo Asynchronous 24 General 1.0

AsyncLockInfoResponse Asynchronous 25 General 1.0

GetDescriptors Either 26 General 2.0

GetDescriptorsResponse Either 27 General 2.0

StartTLS Synchronous 28 SC 2.0

AsyncStartTLS Asynchronous 29 SC 2.0

AsyncStartTLSResponse Asynchronous 30 SC 2.0

EndTLS Synchronous 31 SC 2.0

AsyncEndTLS Asynchronous 32 SC 2.0

AsyncEndTLSResponse Asynchronous 33 SC 2.0

GetSaslMechanismList Synchronous 34 SC 2.0

GetSaslMechanismListResponse Synchronous 35 SC 2.0

AuthenticationStart Synchronous 36 SC 2.0

AuthenticationExchange Synchronous 37 SC 2.0

AuthenticationResult Synchronous 38 SC 2.0

reserved for future use 39-127 Not

defined

VendorSpecific Either 128-255

inclusive

Not

defined

IVI-6.1: IVI High-Speed LAN Instrument Protocol 16 IVI Foundation

In Table 4 in the “Server Capability” column:

 “General” indicates the message type is supported by all HiSLIP servers and clients.

 “SC” indicates the message type can be used if the server indicates support for the “Secure connection”

capability in the AsyncInitializeResponse response.

 “Not defined” means that the associated capability of a reserved or vendor specific message type is not

defined.

In Table 4 the “Minimum HiSLIP protocol version” column indicates the minimum HiSLIP version since which a

message type is supported. If the negotiated protocol version is below this value, the server does not support the given

message type and the client must not send messages of this type.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 17 IVI Foundation

2.6 Locking Mechanism

The HiSLIP protocol provides a locking mechanism including exclusive and shared locks.

After the Initialization Transaction, all subsequent HiSLIP messages from the client to the server are subject to access

control governed by the Lock Transaction.

Section 6.5 describes how one or more clients can obtain a lock. If the server is locked, only the client or clients that

have been granted the lock are permitted access to the server. Clients that do not have the lock behave as described in

section 2.6.1.

If a client is holding an exclusive lock, the server guarantees that only that client has received an exclusive lock. If no

client is holding an exclusive lock, then multiple clients may be granted a shared lock. If multiple clients hold a shared

lock, each is permitted access to the server. If the server has no outstanding locks, then any client is permitted access

to the server.

If any client is holding a shared lock, only a client holding a shared lock shall be granted an exclusive lock. However,

if no client is holding a shared lock, a client requesting an exclusive lock shall be granted that lock.

If a server receives a Lock message requesting a lock from a client that is not holding the lock, it will wait for the

timeout time indicated in that message for the lock to become available.

If a HiSLIP connection is closed any locks assigned to the corresponding client are immediately released by the server.

Nothing in this section should be taken to require that a server is precluded from implementing other security

mechanisms that may result in it refusing to grant access to any client.

The behavior of a server that supports connections other than HiSLIP is beyond the scope of this specification.

However, it is appropriate for a server to manage a single lock across several connection styles, and therefore, a

HiSLIP client may be refused a lock although no other HiSLIP client is holding a lock. Also, a HiSLIP lock may

impact other connection styles.

2.6.1 Server Behavior When Client Does Not Have a Lock

This section describes how servers behave towards clients that do not have the lock when some other client has been

granted either an exclusive or shared lock.

Exchanges with a client that does not have a lock while another client has been granted a lock are handled as follows:

 The AsyncDeviceClear transaction (including all protocol messages) is completed immediately per section

6.12,Device Clear Transaction. Note that only the channel upon which the AsyncDeviceClear was sent is

impacted by this transaction. In this circumstance, device clear is not permitted to impact any of the server

functions other than those associated with this HiSLIP communication session.

 The Establish Secure Connection Transaction and the End Secure Connection Transaction (including all

protocol messages) are completed immediately per sections 6.15 and 6.16, respectively.

 Any transactions that are in-process are completed normally. Thus, the following may be sent:

o AsyncLockResponse

o AsyncInterrupted

o AsyncMaximumMessageSizeResponse

o Appropriate VendorSpecific messages (subject to the vendor-specific definition of these messages)

IVI-6.1: IVI High-Speed LAN Instrument Protocol 18 IVI Foundation

 AsyncStatusQuery, AsyncMaximumMessageSize and AsyncLockInfo transactions are completed.

 AsyncRemoteLocalControl transactions are completed. However, the client shall not wait for locks on other

clients to be released. If another client is holding a lock, the server shall only act on the remote/local request

after the lock is released. The behavior is device dependent.

 AsyncServiceRequest messages are sent normally.

 All synchronous messages are left in the input buffer. Normal TCP behavior to prevent buffer overflows takes

place. Data, DataEND, Trigger, Error, FatalError, and VendorSpecific messages are left in the input buffer.

 Data traffic from the server to the client (Data and DataEND messages) are sent normally. However, since

incoming synchronous messages are blocked, only responses to operations that were begun before the lock

was granted will be generated.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 19 IVI Foundation

2.7 HiSLIP Buffer Sizes

HiSLIP provides the AsyncMaximumMessageSize transaction to inform the client and server of the largest message

they are permitted to send to the other device on the synchronous channel. Clients should initiate this transaction as

part of the initialization process (shortly after the HiSLIP initialization) in order to guarantee that messages do not

overflow the other devices buffers.

Each device shall also have a buffer suitable to accept any asynchronous message. The buffer size for asynchronous

messages are dominated by the messages with a variable payload. That is:

- Error and FatalError which include a variable length string in addition to the 16 byte message header

- AsyncLock message (sent to the server) that includes the variable length lock string.

Common client implementations limit the payload size to 256 bytes.

If either the server or client detect the arrival of a message that is too large to properly handle it shall send an Error

message with the appropriate HiSLIP defined error value.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 20 IVI Foundation

3 Overlapped and Synchronized Modes

In order to maintain compatibility with GPIB, VXI-11 and USB-TMC instruments, the HiSLIP protocol supports two

different operating modes:

Overlap mode In overlap mode input and output data and trigger messages are arbitrarily buffered between the

client and server. For instance, a series of independent query messages can be sent to the server

without regard to when they complete. The responses from each will be returned in the order

the queries were sent. Thus multiple query operations may be initiated and conducted by the

server independent of the rate at which the client consumes the responses.

Synchronized mode In Synchronized mode, the client is required to read the result of each query message before

sending another query2. If the client fails to do so, the protocol generates the interrupted

protocol error and the response from the preceding query is cleared by the protocol.

All HiSLIP clients shall support both synchronized and overlapped mode. HiSLIP servers shall support either

synchronized or overlapped mode or both.

The following sections describe the implementation of these modes.

Note that the calculation of message available (MAV) and the AsyncStatusQuery transaction differ between the

overlapped and synchronized modes also. See section 6.14, Status Query Transaction for details.

2 Per the IEEE 488.2 definition of a response message.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 21 IVI Foundation

3.1 Synchronized Mode

Synchronized mode closely mimics the requirements of the IEEE Std 488.2 message exchange protocol to detect the

interrupted error.

3.1.1 Synchronized Mode Server Requirements

HiSLIP servers shall implement the following:

1. When the server application layer (nominally an instrument parser) requests HiSLIP to send a response message

terminator, the server shall verify that no data is in the server input queue. If there is data in the input queue, the

server shall declare an interrupted error.

To declare an interrupted error, the server shall:

 Use the server error reporting mechanism to report the interrupted error within the server.

 Clear the response message just received from the server application layer, and any other messages

buffered to be sent to the client.

 Send the Interrupted transaction to the client, including both the Interrupted and AsyncInterrupted

messages.

2. When receiving an RMT-delivered flag-carrying message verify the state of the RMT-delivered flag.

The server shall maintain a flag that indicates RMT-expected. RMT-expected shall be set true when the server

sends a DataEND message (that is, when it sends an RMT).

The RMT-expected bit shall be cleared when the server receives AsyncStatusQuery, AsyncStartTLS, or

AsyncEndTLS with RMT-delivered flag set to true.

When Data, DataEND, or Trigger are received, if RMT-expected and RMT-delivered are both either true or false

the RMT-expected bit shall be cleared.

When Data, DataEND, or Trigger are received, if RMT-expected and RMT-delivered are different, the server

shall declare an interrupted error. The server shall use the server error reporting mechanism to report the

interrupted error. No indication of this interrupted error is sent to the client by the HiSLIP protocol.

When servers send the DataEND message, they shall set the MessageID field to the MessageID of the client message

that contained the eom that generated this response.

When servers send the Data message, they may set the MessageID field to the MessageID of the client message that

contained the eom that generated this response so long as that eom is at the end of the identified message. In some

circumstances (for instance, if the eom is not at the end of the message), the server might not be able to provide the

MessageID of the message ending in the eom. In these circumstances, the server shall set the MessageID to 0xffff ffff.

After interrupted error processing is complete, the server resumes normal operation.

3.1.2 Synchronized Mode Client Requirements

HiSLIP clients shall implement the following:

1. When receiving DataEND (that is an RMT), verify that the MessageID indicated in the DataEND message is

the MessageID that the client sent to the server with the most recent Data, DataEND or Trigger message.

If the MessageIDs do not match, the client shall clear any Data responses already buffered and discard the

offending DataEND message.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 22 IVI Foundation

2. When receiving Data messages if the MessageID is not 0xffff ffff, then verify that the MessageID indicated

in the Data message is the MessageID that the client sent to the server with the most recent Data, DataEND

or Trigger message.

If the MessageIDs do not match, the client shall clear any Data responses already buffered and discard the

offending Data message.

3. When the client sends Data, DataEND or Trigger, if there are any whole or partial server messages that have

been validated per rules 1 and 2 and buffered, they shall be cleared.

4. When the client receives Interrupted or AsyncInterrupted, it shall clear any whole or partial server messages

that have been validated per rules 1 and 2.

If the client initially detects AsyncInterrupted, it shall also discard any further Data or DataEND messages

from the server until Interrupted is encountered.

If the client detects Interrupted before it detects AsyncInterrupted, the client shall not send any further

messages until AsyncInterrupted is received.

Clients shall maintain a MessageID count that is initially set to 0xffff ff00. When clients send Data, DataEND or

Trigger messages, they shall set the message parameter field of the message header to the current MessageID and

increment the MessageID by two in an unsigned 32-bit sense (permitting wrap-around).

The MesssageID is reset to 0xffff ff00 after device clear, and when the connection is initialized.

After interrupted error processing is complete, the client resumes normal operation.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 23 IVI Foundation

3.2 Overlapped mode

In overlapped mode commands and responses are buffered by the client and server and I/O operations are permitted to

overlap.

No special processing is required in the server or client other than buffering inbound messages until the respective

application layer requires them. Buffers are only cleared by a device clear.

3.2.1 Overlap Mode Server Requirements

HiSLIP overlap mode servers maintain a MessageID and use it as follows:

1. The MessageID shall be reset to 0xffff ff00 after device clear or initialization.

2. When the server sends Data or DataEND messages it shall place the MessageID into the message parameter and

increment it by two in an unsigned 32-bit fashion (permitting wrap-around).

3.2.2 Overlap Mode Client Requirements

HiSLIP clients shall implement the following:

1. In overlap mode, when sending AsyncStatusQuery, the client shall place the MessageID of the most recent

message that has been entirely delivered to the client in the message parameter.

Clients shall maintain a MessageID count that is initially set to 0xffff ff00. When clients send Data, DataEND or

Trigger messages, they shall set the MessageID field of the message header to the current MessageID and increment

the MessageID by two in an unsigned 32-bit sense (permitting wrap-around).

The MesssageID is reset after device clear, and when the connection is initialized. In overlap mode, the MessageID is

only used for locking.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 24 IVI Foundation

4 Server Capabilities

Server capabilities are added in HiSLIP version 2.0 to enable extensions to the HiSLIP protocol. A server announces

server capabilities in the AsyncInitializeResponse message. Table 5 Server Capabilities, lists defined server

capabilities. Table 4 Message Type Value Definitions, documents message types that are general and message types

that are unique to a server capability. Adding a new capability increases the revision number of this document, but

does not increase the HiSLIP protocol version. Server vendors may define vendor specific capabilities. The following

sections describe each capability in detail.

Table 5 Server Capabilities

Server Capability Name Description

Secure Connection Support of encrypted connections and

authentication.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 25 IVI Foundation

4.1 Secure Connection

HiSLIP protocol version 2.0 enables secure connections. A secure connection is cryptographically protected against

attackers trying to read or manipulate the transferred data. This is achieved using the Transport Layer Security (TLS)

for encryption and decryption. HiSLIP version 2.0 also enables authentication: the server authenticates its identity by

sending an X.509 certificate to the client when the TLS connection is established. The client authenticates to the

server using a server supported SASL (Simple Authentication and Security Layer) mechanism described below.

The requirements in section 4.1, Secure Connection, only apply to servers supporting the Secure Connection

capability.

4.1.1 Client authentication mechanisms

The client may use any mechanism supported by the server, which may support any authentication mechanisms

defined by the SASL, including:

 ANONYMOUS: the client sends an anonymous token string

 EXTERNAL: the server authenticates a client provided certificate

 GSSAPI: login with a Kerberos ticket

 NTLM: Microsoft Windows login

 PLAIN: username and password login

 others (cf. RFC 4422)

The server shall support at least one SASL authentication mechanism.

The server checks the credentials provided by the client and either grants or denies access. The means of checking the

validity of the client’s credentials is out of scope of this specification.

If the server check of client provided information results in an authentication failure, the client may try authentication

using a different mechanism.

4.1.2 Server certificate

The server shall provide a valid X.509 v3 certificate to the client when the TLS connection is established. This

certificate must be signed by a certificate authority trusted by the client. The device vendor shall ensure that the

device (HiSLIP server) is equipped with a suitable X.509 certificate. This specification does not specify how the

certificate is deployed to a device or what the contents of certificate’s fields are.

This paragraph is for informative purposes only. A device vendor has options for deploying certificates to the device.

To maximize interoperability, other specifications might put additional constraints on the certificate. For example, a

device vendor may install an LXI IDevID during manufacturing. As an alternative, a device vendor could also install

vendor-signed certificates, allow the device to create self-signed certificates, or allow the device owner to install a

certificate.

4.1.3 Encryption modes

For encryption, HiSLIP supports two modes of operation:

 encryption mandatory

 encryption optional

The server is configured to operate in one of the two modes. The server announces the mode in the control code of the

InitializeResponse message. The encryption optional mode is intended for backward compatibility as it provides a

way for HiSLIP protocol version 1.0 clients to communicate with HiSLIP protocol version 2.0 servers. This mode

also lets the client optimize performance on demand. Details of both encryption modes are given in Table 6

Encryption modes.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 26 IVI Foundation

Table 6 Encryption modes

Affected HiSLIP item encryption mandatory encryption optional

Negotiated protocol version Negotiated protocol version must be >= 2.0. Any protocol version.

Initialization Establish Secure Connection Transaction

shall follow Initialization Transaction. Only

Maximum Message Size Transaction is

allowed in between.

After Initialization Transaction the

Establish Secure Connection Transaction

may be performed. If the server requires

authentication when establishing

connection, it shall be performed.

TLS Encryption Client cannot switch encryption off. If client

switches encryption off, server closes the

connection.

Client may toggle between encryption on

and off by using the Establish Secure

Connection Transaction and End Secure

Connection Transaction.

Authentication Authentication valid for entire lifetime of

connection

Authentication only valid on encrypted

connections and until encryption is

switched off

4.1.4 Initial Encryption Modes

If encryption is optional the server may require that the client switches encryption on when establishing the

connection. This is useful if the owner of a device wants to restrict access to selected users and operates the device in

a secure network. Hence authentication is required, but the encryption mode is optional.

The server announces the mode in the initial encrypted connection required bit (bit 2) of the control code of the

InitializeResponse message. The value of this bit is only relevant if the encryption mode it optional. If the server

announces encryption mode mandatory, it shall also announce initial encrypted connection required. If the initial

encrypted connection required bit is set, the client shall perform the Establish Secure Connection Transaction after the

Initialization Transaction (with only Maximum Message Size Transaction allowed in between). If the client fails to do

so, the server shall announce fatal error 5 and close the connection. If the initial encrypted connection required bit is

not set, the client may perform the Establish Secure Connection Transaction at its discretion.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 27 IVI Foundation

5 Descriptors

Descriptors are added in HiSLIP version 2.0 to provide extra information about specific server capabilities.

All descriptors shall follow the format below.

Table 7 Descriptor format

Offset Field Size in bytes Content/Value Description

0 Length 2 Number Size of the descriptor content beginning

at offset 3, in bytes

Size = N

2 Descriptor type 1 Byte

3 Varies N

Varies

Varies Varies. Content depends on descriptor

type. Content may include many

instances of different data types

including bitfields, bytes, Uint16’s,

Uint32’s, Uint64’s, strings, etc.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 28 IVI Foundation

5.1 Descriptor types

The numeric values of the different descriptor types are given in Table 8 Numeric values of descriptor types.

Table 8 Numeric values of descriptor types

Descriptor Type

(1 byte)

Meaning

0 Supported TLS versions descriptor

1 TLS information descriptor

2 TLS last error descriptor

3 - 127 IVI reserved

128 - 255 Vendor Specific

5.1.1 Supported TLS versions descriptor

Table 9 Supported TLS versions descriptor

Offset Field Size in bytes Content/Value Description

0 Length 2 Number = N Size of the descriptor content beginning

at offset 3, in bytes

2 Descriptor type 1 Byte = 0 This is the Supported TLS versions

descriptor.

3 Array of

supported TLS

versions

encoded

according to

TLS standard in

network byte

order (RFC

8446 section

5.1)

N =

2*(number of

supported TLS

versions)

Array of UInt16 Example

0x0303 // TLS 1.2 is supported

0x0304 // TLS 1.3 is supported

5.1.2 TLS information descriptor

Table 10 TLS information descriptor

Offset Field Size in bytes Content/Value Description

0 Length 2 Number = N Size of the descriptor content beginning

at offset 3, in bytes

2 Descriptor type 1 Byte = 1 This is the TLS information descriptor.

3 TLS

information

string

N = length of

string.

ASCII-7 String

Not terminated

with 0x00

Examples

 “TLS 1.2, TLS 1.3, ECDHE

disabled”

 “TLS 1.3; GSASL

1.8;IDEVID:LXI”

IVI-6.1: IVI High-Speed LAN Instrument Protocol 29 IVI Foundation

5.1.3 TLS last error descriptor

Table 11 TLS last error descriptor

Offset Field Size in bytes Content/Value Description

0 Length 2 Number = N Size of the descriptor content beginning

at offset 3, in bytes

2 Descriptor type 1 Byte = 2 This is the TLS last error descriptor.

3 TLS last error

string

N = length of

string.

ASCII-7 String

Not terminated

with 0x00

Example:

“SSL_accept() FAILED;
sslErr: SSL_ERROR_SSL; A

failure in the SSL library

occurred, usually a

protocol error. The

OpenSSL error queue

contains more information

on the error”

IVI-6.1: IVI High-Speed LAN Instrument Protocol 30 IVI Foundation

6 HiSLIP Transactions

The following sections describe the HiSLIP protocol transactions.

In the following sections angle brackets (<>) are used to separate the various fields of the message. This is always

expressed as four fields, the fourth field represents the payload and a count is always implied. <0> in the payload field

indicates a count of zero and no payload.

Some transactions are only available if the server supports a certain capability. In this case the associated capability is

stated in the descriptive text of the transaction.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 31 IVI Foundation

6.1 Initialization Transaction

The purpose of the Initialization Transaction is to establish the HiSLIP connection between the client and the server.

This requires opening a synchronous and an asynchronous channel on the same server port and associating the two

together. The two are associated through a session ID that is provided to the client by the server in response to the

Initialize message.

Servers shall support multiple simultaneous clients initializing.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 32 IVI Foundation

Table 12 Initialization Transaction

Step Initiator Message content Action

0 Server none Server passively opens TCP server

socket on the IANA assigned port.

1 Client Opens the synchronous TCP connection (TCP SYN message) Client does an active TCP open,

the server continues to wait for

additional connections

2 Client <Initialize><0><upper:client-protocol-version : lower :client-

vendorID><sub-address>

Client starts the initialization by

identifying the vendor, specifying

the sub-address, and advertising

the protocol version it supports.

3 Server <InitializeResponse><bit 0: overlap-mode; bit 1: encryption-

mode; bit 2: initial encryption><upper :negotiated-protocol-

version : lower :SessionID><0>

Server responds with negotiated

protocol version, which is the

lower of the server version and the

client version.

Server announces whether

encryption is mandatory or

optional and whether it expects

that this transaction is followed by

the Establish Secure Connection

Transaction.

The server also provides the

SessionID to send with

AsyncInitialize.

Note that several FatalError

messages are appropriate at this

time.

4 Client Opens the asynchronous TCP connection

 (TCP SYN message)

Client opens second connection

for the asynchronous channel on

same server port

5 Client <AsyncInitialize><0><SessionID><0> The client sends SessionID to

associate this TCP session with

the established HiSLIP

synchronous channel.

6 Server <AsyncInitializeResponse><server-capabilites><server-

vendorID><0>

Server acknowledges initialize

and provides the vendor ID.

Server announces supported

capabilities.

If initial encryption is not required

or mandatory the HiSLIP

connection is ready for use.

Otherwise, proceed with Establish

Secure Connection Transaction.

The following are the fields in the Initialize client message:

client-protocol-version This identifies the highest version of the HiSLIP specification that the client

implements. Per the IVI standards requirements, HiSLIP specification versions are of

the form <major>.<minor>. The major specification revision, expressed as a binary 8-

IVI-6.1: IVI High-Speed LAN Instrument Protocol 33 IVI Foundation

bit integer is the first byte of the client version. The minor number expressed as a

binary 8-bit integer is the second byte of the client version.

 The client version is sent in the most significant 16-bits (big endian sense) of the 32-bit

message parameter.

client-vendorID This identifies the vendor of the HiSLIP protocol on the client. This is the two-

character vendor abbreviation from the VXIplug&play specification VPP-9. These

abbreviations are assigned free of charge by the IVI Foundation3.

 The client vendorID is sent in the least significant 16-bits (big endian sense) of the 32-

bit message parameter.

sub-address It identifies a particular device managed by this server. It is in the payload field and

therefore includes a 64-bit count. The count is followed by the appropriate length

ASCII sub-address. For instance: “device2”. The maximum length for this field is 256

characters.

If the sub-address is null (zero length) the initialize opens the default (perhaps only)

device at this IP address.

For VISA clients this field corresponds to the VISA LAN device name. Note that

VISA requires that such HiSLIP device names begin with ‘hislip’ and contain only

alphanumeric characters, with a default device name of ‘hislip0’.

The following are the fields in the InitializeResponse server message:

server-protocol-version This identifies the highest version of the HiSLIP specification that the server

implements. It is expressed the same as the client-version field in the Initialize client

message.

 The server version is sent in the most significant 16-bits (big endian sense) of the 32-

bit message parameter.

SessionID This is used to associate the synchronous and asynchronous connections and must be

provided by the client in the InitializeAsync message. This associates the two TCP

connections into a single HiSLIP connection.

 The client vendorID is sent in the least significant 16-bits (big endian sense) of the 32-

bit message parameter.

overlap-mode The server uses this field to indicate if it is initially in overlapped or synchronous

mode. 0 indicates synchronous, 1 indicates overlapped.

encryption-mode The server uses this field to indicate if encryption is optional or mandatory. If the

server does not support the Secure Connections Capability this bit shall be set to 0.

initial encryption The server uses this field to indicate if the client shall switch to the encrypted mode

when establishing the connection. This bit may only be set if the encryption-mode bit is

not set.

3 Contact the IVI Foundation (admin@ivifoundation.org) to register a new vendor ID (also known as a vendor prefix). Vendors

do not need to join the IVI Foundation to obtain a defined two-character abbreviation.

mailto:admin@ivifoundation.org

IVI-6.1: IVI High-Speed LAN Instrument Protocol 34 IVI Foundation

The following is the field in the AsyncInitialize message:

SessionID This is the session ID provided by the server in the InitializeResponse message. It

associates the synchronous and asynchronous connections. This may be discarded by

the client after this message.

The following is the field in the AsyncInitializeResponse message:

server-capabilities Announcement of capabilities supported by the server. If bit 0 is set the secure

connection capability is supported.

server-vendorID This identifies the vendor of the server. This is the two-character vendor abbreviation

from the VXIplug&play specification VPP-9. These abbreviations are assigned free of

charge by the IVI Foundation.4

After the initialization sequence, the client and server will both use the highest protocol version supported by both

devices (that is, the smaller of the two exchanged versions). Note that all HiSLIP devices must support earlier

protocol versions.

Clients that require exclusive access to the server must immediately follow the Initialization Transaction with an

appropriate Lock transaction. If the Lock operation fails then the client can close the connection. Servers shall not

automatically grant a lock to new clients, and the connection may be opened when another client is holding the lock.

If the server announces the mandatory encryption mode or initial encryption is required, the Lock transaction must

immediately follow the Establish Secure Connection Transaction instead of the initialize transaction.

If the server announces that encryption is mandatory or that initial encryption is required and the client does not

proceed with either the Establish Secure Connection Transaction or Maximum Message Size Transaction, the server

declares the fatal error 5 (Secure connection failed).

If the client closes the connection after receiving the InitializeResponse, the server should not declare an error as this is

a legitimate way for a client to validate the presence and version of a server.

4 Ibid

IVI-6.1: IVI High-Speed LAN Instrument Protocol 35 IVI Foundation

6.2 Fatal Error Detection and Synchronization Recovery

Table 13 Synchronous Fatal Error Message

Initiator Message Data Consumer

Either client or

server

<FatalError><ErrorCode><0><length><message> Accept data and handle

appropriately

Initiator Close the connection If initiator is the client, it may

re-open the connection per 6.1

At any point, the client or server may encounter a non-recoverable error situation. For instance, the prologue may be

incorrect. If either device detects an error condition that is likely to cause the two devices to lose synchronization it

shall send the FatalError message on the synchronous channel and the asynchronous channel with appropriate

diagnostic information.

The IVI Foundation defines the error codes listed in Table 14. Error codes from 128-255 inclusive are device defined.

The payload shall be of the specified length and contain a human readable error description expressed in ASCII. A

length of zero with no description is legal.

If the error is detected by the client, after sending the FatalError messages it shall close the HiSLIP connection and

may attempt to re-establish the connection (that is, close both synchronous and asynchronous connections and re-

establish the connection per section 6.1, Initialization Transaction).

If the error is detected by the server, after sending the FatalError messages, it shall close the HiSLIP connection. The

client may re-establish the connection. However the SessionID for the new session will not necessarily relate to the

previous SessionID. Note that locks will not be retained and must be re-acquired.

Table 14 HiSLIP Defined Fatal Error Codes

Error Code Message

0 Unidentified error

1 Poorly formed message header

2 Attempt to use connection without both channels established

3 Invalid Initialization Sequence

4 Server refused connection due to maximum number of clients exceeded

5 Secure connection failed

6-127 Reserved for HiSLIP extensions

128-255 Device defined errors

IVI-6.1: IVI High-Speed LAN Instrument Protocol 36 IVI Foundation

6.3 Error Notification Transaction

Table 15 Synchronous Error Notification Transaction

Initiator Message Data Consumer

Either client or

server

<Error><ErrorCode><0><length><message> Accept data and handle

appropriately

Initiator No further action No further action

If either the client or server receive a message that it is unable to process but that does not cause it to lose

synchronization with the sender it shall discard the errant message and any payload associated with it, then reply with

the Error message.

The Error message shall be sent on whichever connection (synchronous or asynchronous) that the errant message

arrived on.

The payload shall be of the specified length and contain a human readable error description expressed in ASCII. A

length of zero with no description is legal.

The IVI Foundation defines the error codes listed in Table 16, error codes from 128-255 inclusive are device defined.

After sending the Error message, the device shall return to normal processing.

For example, the Error message should be sent in reply to unrecognized vendor specific messages or unsupported

MessageIDs or control codes.

Table 16 HiSLIP Defined Error Codes (non-fatal)

Error Code Message

0 Unidentified error

1 Unrecognized Message Type

2 Unrecognized control code

3 Unrecognized Vendor Defined Message

4 Message too large

5 Authentication failed

6-127 Reserved for HiSLIP extensions

128-255 Device defined errors

IVI-6.1: IVI High-Speed LAN Instrument Protocol 37 IVI Foundation

6.4 DataTransfer Messages

Table 17 Data Transfer Messages from Client to Server

Initiator Message Data Consumer

client <Data><RMT-delivered><MessageID><length><data> Accept data and use it

appropriately

RMT-delivered is 1 if this is

the first RMT-delivered flag-

carrying message since the

client delivered RMT to the

application layer.

The client increments the

MessageID with each Data,

DataEND or Trigger message

sent.

client <DataEND><RMT-delivered><MessageID><length><data> Accept data and use it

appropriately. Final data byte

has an accompanying END.

RMT-delivered is 1 if this is

the first RMT-delivered flag-

carrying message since the

client delivered RMT to the

application layer.

The client increments the

MessageID with each Data,

DataEND or Trigger message

sent.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 38 IVI Foundation

Table 18 Data Transfer Messages from Server to Client

Initiator Message Data Consumer

server <Data><0><MessageID><length><data> Accept data and handle

appropriately

The MessageID in

synchronized mode is the ID

of the message containing the

RMT that generated this

response or 0xffff ffff. The

MessageID in overlapped

mode is an ID that is

incremented with each data

transfer message sent.

server <DataEND><0><MessageID><length><data> Accept data and handle

appropriately. Final data byte

has an accompanying END.

The MessageID in

synchronized mode is the ID

of the message containing the

RMT that generated this

response. The MessageID in

overlapped mode is an ID that

is incremented with each data

transfer message sent.

Either the server or the client is permitted to initiate a data transfer at any time.

For client originated message:

RMT-delivered RMT-delivered is 1 if this is the first RMT-delivered flag-carrying message since the

HiSLIP client delivered an RMT to the client application layer.

MessageID MessageID identifies this message so that response data from the server can indicate

the message that generated it. For generation of the MessageID, see sections 3.1.2

(Synchronized Mode Client Requirements) and 3.2.2 (Overlap Mode Client

Requirements).

For server originated messages:

MessageID MessageID in synchronized mode identifies the client message responsible for

generating this response. In overlapped mode, the MessageID is a continuously

incrementing count that assists in MAV generation. See section 3.1.1(Synchronized

Mode Server Requirements) and 3.2.1(Overlap Mode Server Requirements), and

section 6.14.2, MAV Generation in Overlapped Mode

The DataEND message indicates that the END message should be processed with the final data byte.

These messages are not acknowledged.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 39 IVI Foundation

6.5 Lock Transaction

Table 19 Lock Transaction – Requesting a Lock

Step Sender Message Action

1 Client <AsyncLock><1=request><timeout><LockString

length><LockString>

Request lock, wait up to

timeout milliseconds for it

to become available.

LockString is an ASCII

string indicating shared

lock identification. A zero

length string indicates an

exclusive lock request.

2 Server <AsyncLockResponse><0=failure, 1=success,

3=error><0><0>

Response indicates if the

lock was successful.

Table 20 Lock Transaction – Releasing a Lock

Step Sender Message Action

1 Client <AsyncLock><0 =release><MessageID><0> Release lock

2 Server <AsyncLockResponse><1=success exclusive, 2=success

shared, 3=error><0><0>

Response indicates the type

of lock released if any

The AsyncLock client message is used to request or release a lock as described in Table 21.

The following are the fields in the AsyncLock transaction:

LockString an ASCII string that identifies this lock

MessageID designates the last message to be completed before the release takes place.

Timeout The AsyncLock request passes a 32-bit timeout in the MessageID field. This is the

amount of time in milliseconds the client is willing to wait for the lock to grant. If the

lock is not available in this amount of time, the AsyncLockResponse will fail and return

failure. A timeout of 0 indicates that the server should only grant the lock if it is

available immediately.

The server shall always reply with an AsyncLockResponse per Table 21.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 40 IVI Foundation

Table 21 Lock request/release operation descriptions

Lock Control Code LockResponse
Control Code

Description

0 (release) 1 (success) Release of exclusive lock

was granted.

2 (success) Release of shared lock

was granted

0 (release) 3 (error) Invalid attempt to release

a lock that was not

acquired.

1 (request) 0 (fail) Lock was requested but

not granted (timeout

expired)

1 (request) 1 (success) The lock was requested

and granted

1 (request) 3 (error) Invalid (redundant)

request that is, requesting

a lock already granted

A null LockString in the AsyncLock LockString with a Control Code of 1 indicates a lock request for an exclusive

lock.

A non-null LockString in the AsyncLock LockString with a Control Code of 1 indicates a request for a shared lock.

An AsyncLock with the Control Code set to 0 indicates a request to release the lock.

HiSLIP servers shall respond to lock requests as shown in Table 22. Note that the ‘lock state’ described in this table is

the lock state across all active HiSLIP sessions.

After the Initialization Transaction and Device Clear Transaction, the client shall use the MessageID = 0xfffffefe

(0xffffff00-2) in the AsyncLock (release) message.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 41 IVI Foundation

Table 22 Lock Behavior

Initial

State

Lock request Client New State

Unlocked

(initial

state)

Shared lock any client success Shared Locked

Exclusive lock any client success Exclusive Locked

Release any client error Unlocked

Exclusive

locked

Shared Lock holder of exclusive lock error Exclusive Locked

other client fails after lock timeout Exclusive Locked

Exclusive lock client not holding the lock fails after lock timeout Exclusive Locked

holder of exclusive lock error Exclusive Locked

Release holder of exclusive succeeds Unlocked

client without exclusive lock error Exclusive locked

Shared

locked

Shared lock holder of shared lock error Shared Locked

other client with right key succeeds Shared Locked

other client with wrong key fails after lock timeout Shared Locked

Exclusive lock holder of shared lock succeeds Both Locks

client not holding shared lock fails after lock timeout Shared Locked

Release holder of the shared lock when 2 or more are holding

shared lock succeeds

Shared Locked

the only remaining holder of the shared lock Succeeds Unlocked

client holding no locks error Shared Locked

Both

locks

Shared Lock holder of shared lock error Both locks

other client with right key succeeds Both locks

other client with wrong key fails after lock timeout Both locks

Exclusive lock client not holding the exclusive lock fails after timeout Both locks

client holding the exclusive lock error Both locks

Release holder of exclusive and shared lock succeeds Shared locked

other client holding a shared lock succeeds Both Locks

client holding no locks error Both locks

HiSLIP servers shall:

1. Go to the Unlocked state when the first connection is initialized

2. Release all locks assigned to a client when that client connection closes

6.5.1 Unlock Considerations

In an unlock operation, the MessageID in the message parameter designates the last Data, DataEND or Trigger

message to be completed before the lock is released. The client is only allowed to specify messages that were

transmitted before the AsyncLock operation. The AsyncLock transaction will not complete the unlock until that

message is complete.

Because the AsyncLockResponse message sent for an unlock operation is indistinguishable from the same message in

response to a lock operation, clients should not initiate a lock operation until the prior unlock AsyncLockResponse is

received or cancelled via device clear. For the same reason, servers should report an error using the error transaction if

they receive an AsyncLock message before a pending unlock AsyncLockResponse has been sent. While the unlock

transaction does not complete until the designated message is complete, the timing of the unlock AsyncLockResponse

message is left up to the server, as long as the server knows what the eventual unlock transaction outcome will be. As

IVI-6.1: IVI High-Speed LAN Instrument Protocol 42 IVI Foundation

a result, receipt of the unlock AsyncLockResponse message with a success outcome does not mean the server has

released the session’s lock yet.

The AsyncLock unlock operation can only be aborted by device clear. The normal device clear behavior will abandon

any pending transactions the unlock operation may be waiting for. Note that this requires the server respond in a

timely fashion to an AsyncDeviceClear message while waiting for an AsyncLock unlock operation to complete. When

an AsyncLock unlock operation is abandoned by a device clear, the lock shall be released per the pending unlock

operation and no confirmation sent to the client.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 43 IVI Foundation

6.6 Lock Info Transaction

Table 23 Lock Info Transaction

Step Sender Message Action

1 Client <AsyncLockInfo><0><0><0> Request from the client for lock

information.

2 Server <AsyncLockInfoResponse><exclusive-locks-

granted><locks-granted><0>

The server returns information

regarding locks it has granted.

The following are the fields in the AsyncLockInfoResponse:

exclusive-locks-granted 1 if an exclusive lock has been granted and 0 otherwise.

locks-granted the number of clients that were holding locks when AsyncLockInfo was processed. A

client holding both a shared and exclusive lock is counted only once.

The LockInfo transaction is used by the client to determine how many other clients are connected and how many locks

have been granted. These values are sampled values from the server and may be inaccurate since other clients may be

simultaneous releasing and requesting locks or connections. However, the locks-granted and clients-connected values

shall be self-consistent at some point in time when the LockInfo was processed by the server.

This transaction is processed regardless of whether the client currently holds a lock.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 44 IVI Foundation

6.7 Remote Local Transaction

HiSLIP supports GPIB-like remote/local control. The purpose of remote/local is to:

o Prevent front panel input from interfering with remote operations

o Permit front panel local key to re-enable the front panel input

o Provide a way to lockout the local key5 when the controller needs exclusive access

Table 24 RemoteLocal Control Transaction

Step Sender Message Action

1 Client <AsyncRemoteLocalControl><request><Messa

geID><0>

Request remote local operation

2 Server <AsyncRemoteLocalResponse><0><0><0> Confirm remote/local request

request The values of the request field are shown in Table 25, Remote Local Control

Transactions

MessageID designates the MessageID of the most recent Data, DataEND, or Trigger message sent

by the client.

The server is permitted to act on the AsyncRemoteLocalControl immediately, or wait until after the preceding

operations have been acted on by the server.

In some conditions, TCP may deliver the remote/local requests before it delivers a preceding Data/DataEND or

Trigger message generated by the client. The server should consult the MessageID provided with the

AsyncRemoteLocalControl. If this MessageID is not equal to the MessageID of the last received Data, DataEND, or

Trigger message then the remote/local request should be deferred until after the message (on synchronous channel)

with the designated MessageID was processed.

The server shall send the AsyncRemoteLocalResponse after any server defined actions are complete, however it shall

not wait for locks granted to other clients to be released. Although the AsyncRemoteLocalResponse is sent immediately

if another client is holding a lock, the server shall only act on the remote/local request after the lock is released. The

behavior is device dependent.

Three logical variables maintained by the server dictate its behavior:

Remote Controls if front panel input is accepted. Note that remote input is always accepted. If

Remote is true, front panel input is not accepted, with the exception of the local key. If

the local key is pressed and LocalLockout is set to false, Remote is set false so that

subsequent front panel input is accepted. When the connection is initialized Remote is

false.

RemoteEnable Mimics the GPIB REN line, but is maintained by the individual server. When the

connection is initialized RemoteEnable is true.

LocalLockout If true, the front panel local key has no affect. If false, the front panel local key sets

Remote to false. When the connection is initialized LocalLockout is false.

5 The local key, as defined by IEEE 488, is a key on the instrument an operator can use to gain front panel access to the

instrument when front panel access has been automatically disabled by the 488 protocol.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 45 IVI Foundation

If RemoteEnable is true and new data or control information arrives via the HiSLIP protocol, Remote is set to true.

Specifically, any of the following messages on the synchronous channel set remote to true, provided that a deferred

implication is processed:

o Data

o DataEND

o Trigger

Or any of the following messages on the asynchronous channel:

o AsyncStatusQuery

o AsyncDeviceClear

o AyncLock

Servers are permitted to take a device specific action for VendorSpecific messages.

RemoteLocal HiSLIP messages set these state variables as described in Table 25. In that table, T indicates the

variable is set, F indicates the variable is cleared, and nc indicates the variable is not changed.

After the Initialization Transaction and Device Clear Transaction, the client shall use the MessageID = 0xfffffefe

(0xffffff00-2) in the AsyncRemoteLocalControl message.

The remote/local control codes correspond to the parameters of the VISA viGpibControlREN6 function call. The

behavior is chosen to emulate the behavior of a GPIB device. 7

6 The VISA specification (vpp43, Table 6.5.1) specifies the following:

Mode Action Description

VI_GPIB_REN_DEASSERT Deassert REN line.

VI_GPIB_REN_ASSERT Assert REN line.

VI_GPIB_REN_DEASSERT_GTL
Send the Go To Local command (GTL) to this device and deassert
REN line.

VI_GPIB_REN_ASSERT_ADDRESS Assert REN line and address this device.

VI_GPIB_REN_ASSERT_LLO Send LLO to any devices that are addressed to listen.

VI_GPIB_REN_ASSERT_ADDRESS_LLO Address this device and send it LLO, putting it in RWLS.

VI_GPIB_REN_ADDRESS_GTL Send the Go To Local command (GTL) to this device.

7 The VISA API provides general control of GPIB that is not necessary for a HiSLIP client. Practical HiSLIP applications can

be handled by using just three values for the mode: VI_GPIB_REN_DEASSERT which will always place the instrument in

local, VI_GPIB_REN_ASSERT_ADDRESS_LLO which will always put the instrument into remote with local-lockout, and

VI_GPIB_REN_ASSERT_ADDRESS which will place the instrument into remote, but enable the front panel local key (with

automatic transitions back to remote when remote data is received). Unfortunately, the names of these modes are not very

mnemonic.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 46 IVI Foundation

Table 25 Remote Local Control Transactions

Control Code (request) Corresponding VISA mode from
viGpibControlREN

Behavior

R
em

o
te

En
ab

le

Lo
ca

lL
o

ck
o

u
t

R
em

o
te

0 – Disable remote VI_GPIB_REN_DEASSERT F F F

1 – Enable remote VI_GPIB_REN_ASSERT T nc nc

2 – Disable remote and go

to local
VI_GPIB_REN_DEASSERT_GTL F F F

3 – Enable remote and go

to remote
VI_GPIB_REN_ASSERT_ADDRE

SS

T nc T

4 – Enable remote and

lock out local
VI_GPIB_REN_ASSERT_LLO T T nc

5 – Enable remote, got to

remote, and set local

lockout

VI_GPIB_REN_ASSERT_ADDRE

SS_LLO

T T T

6 – go to local without

changing state of

remote enable

VI_GPIB_REN_ADDRESS_GTL nc nc F

If multiple clients make changes the behavior shall be the same as if a single client made all the requests serially in

whatever order the requests are handled by the server.

On closing the connection, the remote local behavior is defined by the server.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 47 IVI Foundation

6.8 Trigger Message

Table 26 Trigger Message

Step Sender Message Action

1 Client <Trigger><RMT-delivered><MessageID><0> Initiate a trigger

The trigger message is used to emulate a GPIB Group Execute Trigger. This message shall have the same instrument

semantics as GPIB Group Execute Trigger.

The fields in the Trigger message are:

RMT-delivered RMT-delivered is 1 if this is the RMT-delivered flag-carrying message since the

HiSLIP client delivered an RMT to the client application layer.

MessageID MessageID identifies this message so that response data from the server can indicate

the message that generated it. For generation of the MessageID, see sections 3.1.2

(Synchronized Mode Client Requirements) and 3.2.2 (Overlap Mode Client

Requirements).

IVI-6.1: IVI High-Speed LAN Instrument Protocol 48 IVI Foundation

6.9 Vendor Defined Transactions

Table 27 Vendor Defined Transaction

Step Sender Message Action

1 Either <VendorDefined><arbitrary><arbitrary ><length><payload> Vendor defined

2 Response – if unrecognized non-fatal error, if recognized

vendor defined.

VendorDefined messages may be used arbitrarily by vendors on either the synchronous or asynchronous channels.

Clients or servers that do not recognize VendorDefined messages shall ignore the message including the number of

subsequent data bytes.

Devices or Servers receiving VendorDefined commands they do not support shall respond with an Error message on

the same channel the Vendor defined message arrived on specifying “Unrecognized Vendor Defined Message”.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 49 IVI Foundation

6.10 Maximum Message Size Transaction

Table 28 Maximum Message Size Transaction

Step Sender Message Action

1 Client <AsyncMaximumMessageSize><0><0><8><8-byte

size>

The server sets the maximum message

size it will send to the client to the

specified value

2 Server <AsyncMaximumMessageSizeResponse><0><0><8>

<8-byte size>

The client sets the maximum message

size it will send to the server to the

specified value

The AsyncMaximumMessageSize transaction is used to inform the client and server of the maximum message size they

are permitted to send to the other one on the synchronous channel. This is especially important for small devices that

may be unable to handle large messages.

The AsyncMaximumMessageSize transaction is initiated by the client. Neither clients nor servers are obligated to

accept a particular message size beyond what is necessary during initialization. Therefore it is prudent for clients to

initiate this transaction as part of initialization to inform the server of its message size limitations and determine the

server limitations.

The specified message sizes only apply to the synchronous channel.

The 8-byte buffer size is sent in network order as a 64-bit integer.

Servers shall keep independent client message sizes for each HiSLIP connection.

If the server has announced that encryption is mandatory or the initial connection is required to be encrypted, this

transaction may be performed between the Initialization Transaction and the Establish Secure Connection Transaction.

Note that the maximum message size shall not apply to the Establish Secure Connection Transaction and split the

payload of e.g. GetSaslMechanismListResponse or AuthenticationExchange.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 50 IVI Foundation

6.11 Interrupted Transaction

Table 29 Interrupted Transaction

Step Sender Message Action

1 Server <AsyncInterrupted><0><MessageID><0> Clear buffered messages.

2 Server <Interrupted><0><MessageID><0> Clear buffered messages.

The interrupted transaction is sent from the server to the client when the server detects an interrupted protocol error.

The client shall clear any buffered Data, DataEND, or Trigger messages from the server and ignore any subsequent

Data, DataEND, or Trigger messages until it has received both the synchronous Interrupted message and

asynchronous AsyncInterrupted messages arrive.

The MessageID field indicates the MessageID of the Data, DataEND, or Trigger message that interrupted the server

response.

For usage of the interrupted transaction, see section 3 (Overlapped and Synchronized Modes).

IVI-6.1: IVI High-Speed LAN Instrument Protocol 51 IVI Foundation

6.12 Device Clear Transaction

Device clear clears the communication channel.

Table 30 Device Clear Complete Transaction

Step Sender Message content Action

1 Client <AsyncDeviceClear><0><0><0>

---- Client complete messages underway and abandon any

pending messages

Abandon pending messages and

wait for in-process synchronous

messages to complete

2 Server <AsyncDeviceClearAcknowledge><featurePrefe

rence><0><0>

The client shall wait for this

acknowledgement before

additional processing.

3 Client <DeviceClearComplete><featureRequest><0><

0>

Indicate to server that

synchronous channel is cleared

out.

4 Server NA Upon receipt of the

AsyncDeviceClear messages

abandon any operations in

progress.

5 Server NA Disregard input messages until

the DeviceClearComplete

message is found. But continue

to require well-formed messages.

6 Server <DeviceClearAcknowledge><featureSetting><0

><0>

Client and server each resume

normal operation.

To send a device clear, the client will:

1. Finish sending any partially sent messages on either channel.

2. Send the AsyncDeviceClear message on the asynchronous channel.

3. If the protocol was amidst any of the following transactions permit them to complete if the server responds

before sending DeviceClearAcknowledge

a. Lock (client waiting for AsyncLockResponse)

If DeviceClearAcknowledge arrives from the server before these other operations are acknowledged, the client

HiSLIP shall assume the operations were not completed.

4. Clear messages on the synchronous and asynchronous channels with the exception of FatalError,

DeviceClearAcknowledge, and AsyncDeviceClearAcknowledge.

5. Wait for the AsyncDeviceClearAcknowledge message.

6. Send the DeviceClearComplete message on the synchronous channel indicating to the server that no further

messages will be sent to it.

7. Wait for the server to respond with DeviceClearAcknowledge on the synchronous channel.

8. The MesssageID is reset to 0xffff ff00.

9. Resume normal operation.

When the server receives the asynchronous AsyncDeviceClear message, it shall:

1. Complete any partially complete transactions involving the asynchronous channel without waiting for timeouts.

2. Send AsyncDeviceClearAcknowledge.

3. Finish sending any partially sent messages to the client. Complete with the normal behaviors, without waiting

for any timeouts.

4. Abandon any buffered unsent transactions.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 52 IVI Foundation

5. Clear any well-formed messages received from the client on the synchronous channel.

6. Accept and ignore subsequent synchronous messages until it finds the synchronous DeviceClearComplete

message.

7. Send DeviceClearAcknowledge message back to the client (after the above steps are complete and it has

received the device clear complete message).

8. Resume normal operation.

If at any time during device clear management either the client or server encounter a poorly formed message they shall

send a FatalError message and do the FatalError processing.

If at any time during the device clear management the client or server determines that the other device is not

responding in a timely fashion, it shall send a FatalError message and do the FatalError processing. The

determination of an appropriate time may vary with the application, 40 to 120 seconds are reasonable values.

6.12.1 Feature Negotiation

During device clear, the features listed in Table 31 are negotiated between the client and server. The features are

specified through a feature bitmap that is sent in the control code of three different messages.

The feature negotiation occurs in three steps:

1. The server proposes values that it prefers with the AsyncDeviceClearAcknowledge message.

2. The client indicates values that it requests in the DeviceClearComplete message.

3. The server indicates the values that both client and server will use in the DeviceClearAcknowledge message.

The server shall identify the default values it prefers for the features in the AsyncDeviceClearAcknowledge message.

Servers shall support any such capabilities that it requests.

The server shall accept the value proposed by the client in the DeviceClearComplete message if it is capable of

supporting them.

The client shall use the values specified by the server in the DeviceClearAcknowledge message.

Note that the InitializeResponse has the server preferred features specified in it.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 53 IVI Foundation

Table 31 Features negotiated during device clear

Control Code Bit Name Meaning

0 Overlapped Related to current connection

False- Synchronized mode

True - Overlapped mode

1 Encryption mode Related to logical instrument specified by sub-address of the

Initialize Message

False - Encryption mode optional or negotiated HiSLIP

Version < 2.0

True - Encryption mode mandatory

2 Initial encryption Related to logical instrument specified by sub-address of the

Initialize Message

False - Establish Secure Connection Transaction not required

after Initialization Transaction

True - Establish Secure Connection Transaction must follow

Initialization Transaction.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 54 IVI Foundation

6.13 Service Request

Table 32 Service Request

Step Sender Message content Action

1 Server <AsyncServiceRequest><status><0><0> Client initiated request for service

The server requests service by sending the AsyncServiceRequest message.

The control code contains the 8-bit status register.

No values, including rqs (request service), are cleared in the status register. Note that since no values are cleared, the

client must do an AsyncStatusQuery to clear the rqs bit and enable additional AsyncServiceRequest messages.

This message is not acknowledged.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 55 IVI Foundation

6.14 Status Query Transaction

Table 33 Status Message

Step Sender Message content Action

1 Client <AsyncStatusQuery><RMT-delivered><MessageID><0> Client initiates a request for

status

2 Server <AsyncStatusResponse><status><0><0> Status information is sent back

in the control code field

The status query provides an 8-bit status response from the server that corresponds to the VISA viReadSTB operation.

The status query is initiated by the client and sent on the asynchronous channel.

The calculation of the message available bit (MAV) of the status response differs for overlapped and synchronized

modes and requires the client to provide a different Message ID.

The following are the fields of the AsyncStatusQuery client message:

RMT-delivered RMT-delivered is 1 if this is the first RMT-delivered flag-carrying message since the

client delivered RMT to the application layer. Note that RMT-delivered is only

reported once.

MessageID In synchronized mode, this field contains the MessageID of the most recent Data,

DataEND,or Trigger message sent by the client.

In overlapped mode, this field contains the MessageID of the most recent Data or DataEND message

delivered to the client application layer.

The following are the fields of the AsyncStatusResponse server message:

status This field contains an 8-bit status response from the server.

When clients send AsyncStatusQuery messages, they shall set the message header to the MessageID field of the

message header of the most recently sent Data, DataEND, or Trigger message. See section 3, Overlapped and

Synchronized Modes for the server construction of the status response.

After the Initialization and Device Clear transactions, the client shall use the MessageID = 0xfffffefe (0xffffff00-2) in

the AsyncStatusQuery message.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 56 IVI Foundation

6.14.1 MAV Generation in Synchronized Mode

HiSLIP asynchronously reads the status back from the server using the AsyncStatusQuery message on the

asynchronous channel. However, IEEE Std 488.2 requires servers to include a MAV (Message Available) bit in

position 4 that indicates if data is available from the server. The RMT-delivered indication sent from the client to the

server assists the server in determining the correct value for MAV.

Per IEEE Std 488.2 the MAV bit shall be sent in bit 4 (zero-based) of the status response from the server.

MAV shall be set true when the server sends the first Data or DataEND of a response.

MAV shall be set false when RMT-delivered is indicated by the client in any RMT-delivered flag-carrying message.

Figure 1 shows how the MAV shall be calculated.

Note that new-reason-for-service is only asserted on the transitions between these states. Therefore, an

AsyncServiceRequest is only generated for MAV once per message.

6.14.2 MAV Generation in Overlapped Mode

In overlapped mode, the server shall compare the MessageID specified in the AsyncStatusQuery to the current

MessageID counter. If any messages have not been fully delivered to the client application, MAV shall be set true.

6.14.3 Implementation Note

In some conditions, TCP may deliver an AsyncStatusQuery before it delivers a preceding Data/DataEND or Trigger

message generated by the client.

MAV

True

MAV

False

Power-on

Device-clear or

Error recovery

Send

- Data

- DataEND

RMT-delivered set in

- AsyncStatusQuery

- Data

- DataEND

- Trigger

- AsyncStartTLS

- AsyncEndTLS

Figure 1 MAV Generation in Synchronized Mode

IVI-6.1: IVI High-Speed LAN Instrument Protocol 57 IVI Foundation

In synchronized mode, the server should consult the MessageID provided with the AsyncStatusQuery. If this

MessageID is not equal to the MessageID of the last received Data, DataEND, or Trigger message then MAV shall be

set false. Note that in this special case the server either has no data for delivery or will be interrupted with the next

pending synchronous message. In the case where MAV is reported as false because of a pending interrupted error, it

is not necessary for the server to detect and report the error in this status response however the interrupted error will be

reported subsequently with normal interrupted processing.

In overlapped mode, the provided MessageID strictly indicates the availability of new data. Therefore, the client

should never presume that the absence of message available indicates additional data will not be made available later.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 58 IVI Foundation

6.15 Establish Secure Connection Transaction

This transaction is only available if the Secure Connection capability is supported.

The purpose of this transaction is to encrypt the connection and to authenticate server and client mutually. If

encryption is mandatory or the server requires the initial connection to be encrypted, this transaction must follow

immediately after the Initialization Transaction or after Maximum Message Size Transaction. Otherwise, the server

declares fatal error code 5. If encryption is optional, this transaction can be started at any time if a secure connection

has not been established.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 59 IVI Foundation

Table 34 Establish secure connection transaction

Step Initiator Message content Action

0 Client <AsyncStartTLS><RMT-

delivered><MessageIDsent><MessageIDreceived>

1 Server <AsyncStartTLSResponse><0=busy,1=success,3=error><0><0> Based on the RMT and message

IDs from step 0, the server

determines if it is ready to switch

the encryption mode (indicated by

success), if it is busy (this could

happen if there is still data in the

I/O buffers), or if there is an error.

This transaction continues only if

success is indicated.

2 Both TLS handshaking according to Chapter 4 Handshake Protocol

(RFC 8446) on the asynchronous channel

After successful handshaking the

asynchronous connection is

encrypted

3 Client <StartTLS><0><0><0>

4 Both TLS handshaking according to Chapter 4 Handshake Protocol

(RFC 8446) on the synchronous channel

After successful handshaking the

synchronous connection is

encrypted

5 Client <GetSaslMechanismList><0><0><0> The client requests the available

SASL mechanisms. This step is

optional, the client may choose to

continue with step 7 instead.

6 Server <GetSaslMechanismListResponse><0><0><mechanisms list> The Server sends a space-

separated list containing the

available SASL authentication

mechanisms.

7 Client <AuthenticationStart><0><0><Mechanism> The Client selects an

authentication method.

8 Client <AuthenticationExchange><0><0><data> The client sends the initial

response based on the chosen

mechanism. If the mechanism

requires a challenge before the

first response, this message

contains no data.

9 Server <AuthenticationExchange><0><0><data> The server sends a challenge or

continues with step 11.

10 Client <AuthenticationExchange><0><0><data> The client sends a response to the

challenge and waits for either

another challenge or the

authentication result from the

server. The server continues with

step 9.

11 Server <AuthenticationResult><0|1><error code><data> The server sends the result of the

authentication. If authentication

was not successful, the client must

either return to step 6, close the

connection, or continue with End

Secure Connection Transaction

(only allowed if encryption is

optional).

If successful, the secure HiSLIP

connection is ready for use.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 60 IVI Foundation

The following are the fields of the AsyncStartTLS client message:

 RMT-delivered: RMT-delivered is 1 if this is the first RMT-delivered flag-carrying message since the client

delivered RMT to the application layer. Note that RMT-delivered is only reported once.

 MessageIDsent: this field contains the MessageID of the most recent Data, DataEND or Trigger message sent

by the client. For vendor specific messages it is up to the vendor if the message ID of the last vendor specific

message should be used here.

 MessageIDreceived: this 4-byte payload contains the MessageID of the most recent Data or DataEND message

delivered to the client application layer.

After the Initialization and Device Clear transactions, the client shall use the MessageIDsent = 0xfffffefe (0xffffff00-2)

and MessageIDreceived = 0xfffffefe (0xffffff00-2) in the AsyncStartTLS message.

By comparing the values of MessageIDsent and MessageIDreceived in the AsyncStartTLS message to the value the

server knows from its last outgoing message, the server determines whether its and the client’s buffers are empty.

Based on the result the server indicates its status:

 Success: All buffers are empty and it is possible to switch the encryption mode. The transaction continues

normally.

 Busy: The buffers are not empty. This transaction is aborted. Note, that a Device Clear Transaction empties the

buffers so that a following switch of the encryption mode will succeed.

 Error: There is an error preventing to switch the encryption mode. This transaction is aborted. The encryption

mode cannot be switched even after a Device Clear Transaction. One reason could be, that encryption is

already switched on. The TLS last error descriptor provides further details.

After the client receives the AsyncStartTLSResponse message indicating success (step 1) it shall continue with the

“Client Hello” message according to TLS handshake (RFC 8446) on the asynchronous channel. After the client sends

the StartTLS message (step 3), it shall continue with “Client Hello” on the synchronous channel.

For a successful connection, during the TLS handshake the server must provide a certificate, which has not yet

expired, which has not been revoked and which is signed by a certificate authority trusted by the client. If one of these

criteria is not fulfilled, the client declares fatal error code 5 and closes the connection.

A server that supports SASL authentication mechanism EXTERNAL shall request a client certificate according to

RFC 8446 4.3.2. If the client chooses a different mechanism, the client may ignore the request and not provide a

certificate. In the TLS handshake, in this case, only the server is required to provide a certificate. If EXTERNAL is

the only mechanism supported by the server, the client shall provide a certificate or the authentication fails.

The server shall support at least one SASL authentication mechanism.

The list of supported SASL mechanisms sent by the server in the GetSaslMechanismListResponse message should be

ordered by preference. The first mechanism in the list should be the one with the highest preference by the server,

whereas the last mechanism in the list should be the one with least preference. If the client does not have a preference,

it should attempt the mechanisms in the preference order of the server.

If an unsupported mechanism is declared in the AuthenticationStart message, the server declares the non-fatal error

code 5.

Client authentication is performed with dedicated HiSLIP messages (steps 7 to 11).

If the client or server transmit invalid data in the AuthenticationExchange messages, the other side shall declare the

fatal error code 5.

It is recommended to reuse the session key, which was negotiated in the TLS handshake of the asynchronous channel,

in the TLS handshake of the synchronous channel. This saves time when establishing the connection. Furthermore, it

is recommended to resume closed sessions, according to F.1.4 of RFC 8446, if the TLS sessions or the HiSLIP session

was closed.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 61 IVI Foundation

If the authentication was not successful (step 11) the client may retry with step 7. In order to prevent brute force

attacks, it is recommended that the server adds a delay for authentication after a certain number of authentication

failures.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 62 IVI Foundation

6.16 End Secure Connection Transaction

This transaction is only available if the Secure Connection capability is supported.

The purpose of this transaction is to end a secure connection. This transaction is only allowed if the Establish Secure

Connection Transaction was successful and the secure connection has not been ended. If encryption mode is

mandatory this transaction shall fail.

Table 35 End secure connection Transaction

0 Client <AsyncEndTLS><RMT-

delivered><MessageIDsent><MessageIDreceived>

1 Server <AsyncEndTLSResponse><0=busy,1=success,3=error><0><0> Based on the RMT and message

IDs from step 0, the server

determines if it is ready to switch

the encryption mode (indicated by

success), if it is busy (this could

happen if there is still data in the

I/O buffers), or if there is an error.

This transaction continues only if

success is indicated.

2 Both End TLS according to Chapter 6.1 RFC 8446 on the

asynchronous channel

After close_notify is exchanged,

subsequent messages on the

asynchronous channel are no

longer encrypted.

3 Client <EndTLS><0><0><0>

4 Both End TLS according to Chapter 6.1 RFC 8446 on the

synchronous channel

After close_notify is exchanged,

subsequent messages on the

synchronous channel are no longer

encrypted.

After this transaction, the authenticity of the client and the server cannot be guaranteed.

The following are the fields of the AsyncEndTLS client message:

 RMT-delivered: RMT-delivered is 1 if this is the first RMT-delivered flag-carrying message since the client

delivered RMT to the application layer. Note that RMT-delivered is only reported once.

 MessageIDsent: this field contains the MessageID of the most recent Data, DataEND or Trigger message sent

by the client. For vendor specific messages it is up to the vendor if the message ID of last vendor specific

message should be used here.

 MessageIDreceived: this 4-byte payload contains the MessageID of the most recent Data or DataEND message

delivered to the client application layer.

After the Initialization and Device Clear transactions, the client shall use the MessageIDsent = 0xfffffefe (0xffffff00-2)

and MessageIDreceived = 0xfffffefe (0xffffff00-2) in the AsyncEndTLS message.

By comparing the values of MessageIDsent and MessageIDreceived in the AsyncEndTLS message to the value the

server knows from its last outgoing message, the server determines whether its and the client’s buffers are empty.

Based on the result the server indicates its status:

 Success: All buffers are empty and it is possible to switch the encryption mode. The transaction continues

normally.

 Busy: The buffers are not empty. This transaction is aborted. Note, that a Device Clear Transaction empties the

buffers so that a following switch of the encryption mode will succeed.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 63 IVI Foundation

 Error: There is an error preventing to switch the encryption mode. This transaction is aborted. The encryption

mode cannot be switched even after a Device Clear Transaction. One reason could be, that encryption is

already switched on. The TLS last error descriptor provides further details.

After the client receives the AsyncEndTLSResponse message indicating success (step 1) it shall continue with the

“close_notify” message according to TLS handshake (RFC 8446) on the asynchronous channel. After the client sends

the EndTLS message (step 3), it shall continue with “close_notify” on the synchronous channel.

After ending the secure connection, both the server and the client should store the session key, for being able to

resume the TLS session.

IVI-6.1: IVI High-Speed LAN Instrument Protocol 64 IVI Foundation

A. Analysis of Interrupted Conditions

This is an informative appendix and is not part of the HiSLIP standard requirements.

The following transaction diagrams describe HiSLIP behavior in synchronized mode with various interrupted

conditions.

A.1 Slow Client

Detailed explanation:

1. At this point the response indicates the eom from the preceding message.

2. Note that the client probably will not get a chance to execute until the client application calls viWrite.

However, the client HiSLIP has the opportunity to take care of input processing before attempting to send the

second write message. At this point, the client detects the error based on section 3.1.2 rule 3 and clears the

first response from its buffer. (this error detection is essential at this point to ensure that the buffered

response is not provided to a subsequent viRead). The client then sends the second query normally.

3. Note that the second query indicates that the RMT was NOT delivered to the application layer. Therefore the

server will also detect the error based on 3.1.1 rule 2. Since the last action by the server was to send RMT, no

error handling is necessary other than reporting the error.

viRead

query w/eom (no RMT)

query w/eom

viWrite

Client App Client HiSLIP Server

viWrite

Response w/RMT

Response w/RMT

Figure 2 Interrupted error with slow client

IVI-6.1: IVI High-Speed LAN Instrument Protocol 65 IVI Foundation

A.2 Fast Client

Detailed explanation:

1. Note that from the perspective of the client HiSLIP, there may not be a problem, since the data being written

may be commands.

2. Per section 3.1.1 rule 1 The server detects interrupted because it has a complete response (with RMT) and

the input buffer is not empty. The response to the first query is never sent.

3. The response to the second query is sent normally.

4. NOTE – although not required here, the server sends an interrupted message (as shown in Figure 4

Interrupted error with fast client and partial response).

query w/eom (no RMT)

query w/eom

viWrite

Client App Client HiSLIP Server

viWrite

Response w/RMT

viRead

Interrupted message

Figure 3 Interrupted error with fast client

IVI-6.1: IVI High-Speed LAN Instrument Protocol 66 IVI Foundation

Detailed explanation:

1. Note that from the perspective of the client HiSLIP, there may not be a problem, since the data being written

may be commands.

2. Per IEEE Std 488.2, the server chooses to send a partial response (without RMT) to the client. IEEE Std

488.2 permits delivering this to the client, but the RMT corresponding to the first query must not be

delivered.

3. Per section 3.1.1 rule 1, the server detects interrupted because it has a complete response (with RMT) and the

input buffer is not empty (note the server is still completing processing on the first query). The final portions

of the response to the first query are not sent.

4. Server informs the client that the partial response should be cleared if not already delivered.

5. The partial response is only delivered to the client if the client application attempts to read before the

Interrupted or AsyncInterrupted message arrives and is detected by the client protocol. In this illustration, the

HiSLIP client will not deliver the partial response.

6. The response to the second query is sent normally.

Partial Response

query w/eom (no RMT)

query w/eom

viWrite

Client App Client HiSLIP Server

viWrite

Response w/RMT

viRead

Interrupted message

Figure 4 Interrupted error with fast client and partial response

IVI-6.1: IVI High-Speed LAN Instrument Protocol 67 IVI Foundation

A.3 Intermediate Timing

Detailed explanation:

1. Second query and first response cross in-flight. Note that it is essential to have some error detection on the

client in this case, otherwise this errant response would be delivered.

2. Based on section 3.1.1 rule 2, the server detects the error and reports it. Since it has already launched the first

response it takes no additional action.

3. Based on section 3.1.2 rule 1, the client detects the stale response and clears it without offering any to the

client app.

Response w/RMT

query w/eom (no RMT)

query w/eom

viWrite

Client App Client HiSLIP Server

viWrite

Response w/RMT

viRead

Figure 5 Race condition: first response and second query pass in-flight

